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Abstract. Peculiarities of transport properties of three- and two-dimensional half-metallic ferromagnets are
investigated, which are connected with the absence of spin-flip scattering processes. The temperature and
magnetic field dependences of resistivity in various regimes are calculated. The resistivity is proportional
to T 9/2 for T < T ∗ and to T 7/2 for T > T ∗, T ∗ being the crossover temperature for longitudinal scattering
processes. The latter scale plays also an important role in magnetoresistance. The contribution of non-
quasiparticle (incoherent) states to the transport properties is discussed. It is shown that they can dominate
in the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity.

PACS. 72.10.Di Scattering by phonons, magnons, and other nonlocalized excitations – 72.25.Ba Spin
polarized transport in metals – 75.50.Cc Other ferromagnetic metals and alloys

1 Introduction

Half-metallic ferromagnets (HMF) [1–3] attract now a
growing attention of researchers, first of all, because of
their importance for “spintronics”, or spin-dependent elec-
tronics [4]. HMF have metallic electronic structure for
one spin projection (majority- or minority-spin states),
but for the opposite spin direction the Fermi level lies in
the energy gap [1]. Therefore the corresponding contri-
butions to electronic transport properties have different
orders of magnitude, which can result in a huge mag-
netoresistance for heterostructures containing HMF [2].
Discussion of possible role of the half-metallic ferromag-
netism in colossal magnetoresistance (CMR) materials like
La1−xSrxMnO3 [5] has increased considerably the inter-
est in this topic. Note that the experimental situation for
CMR systems is controversial. In particular, experimental
observation of the HMF state by spin-polarized photoe-
mission [6] seems to be in contradiction with later Andreev
reflection data [7]; this controversy is expected to stimu-
late further treatments of the problem, both experimental
and theoretical. Transport properties of other HMF are
the subject of numerous experimental investigations (see,
e.g., recent works for CrO2 [8] and NiMnSb [9], and the
reviews [2,10,11]). At the same time, the theoretical in-
terpretation of these results is still a problem.
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As for electronic scattering mechanisms, the most im-
portant difference between HMF and “standard” itinerant
electron ferromagnets like iron or nickel is the absence of
one-magnon scattering processes in the former case [2].
Two-magnon scattering processes have been considered
many years ago for both the broad-band case (weak s-d
exchange interaction) [12] and narrow-band case (“double
exchange model”) [13]. The obtained temperature depen-
dences of the resistivity have the forms T 7/2 and T 9/2,
respectively. At low enough temperatures the first result
fails and should be replaced by T 9/2 as well [14]; the rea-
son is the compensation of the transverse and longitudinal
contributions in the long-wavelength limit which is a con-
sequence of the rotational symmetry of the s-d exchange
Hamiltonian [15,16].

Up to now there are no results which describe in the
whole temperature region the resistivity of HFM and
especially its magnetic-field dependence which is most
interesting from the experimental point of view. Such
expressions are obtained in Section 2. Apart from three-
dimensional case studied before [12–14] we consider also
two-dimensional HMF keeping in mind, e.g., layered CMR
compounds like LaSr2Mn2O7 (for a review see Ref. [11]).
These systems are almost half-metallic according to the
recent band-structure calculations [17], although the situ-
ation is also not quite clear.

Owing to peculiar band structure of HFM, an impor-
tant role belongs to incoherent (non-quasiparticle) states
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which occur near the Fermi level because of correlation
effects [2]. In Section 3 we treat the corresponding con-
tributions to resistivity and discuss tunneling phenomena
in HMF.

2 Resistivity and magnetoresistivity

The problem of electron transport in the manganites is
rather complicated and not understood in details. In par-
ticular, effects of electron-phonon coupling can be impor-
tant [22]. In the present work, effects of interaction of cur-
rent carriers with local moments are investigated in the
standard s-d exchange model. Its Hamiltonian reads

H =
∑
kσ

tkc†kσckσ −
∑
qk

Ik,k+q

∑
αβ

Sqc†kασαβck−qβ

−
∑
q

JqSqS−q (1)

where c†kσ, ckσ and Sq are operators for conduction elec-
trons and localized spins in the quasimomentum represen-
tation, the electron spectrum tk is referred to the Fermi
level EF , Ik,k+q is the s-d exchange parameter which will
be put for simplicity k-independent, σ are the Pauli matri-
ces. We include in the Hamiltonian explicitly the “direct”
d-d exchange interaction (last term in (1)) to construct
perturbation theory in a convenient form. In real situa-
tion, this interaction may have superexchange nature or
result from the indirect exchange via conduction electrons
(in the HFM situation, this is, generally speaking, not
reduced to the RKKY interaction but has a more compli-
cated form [18,19]). The indirect d-d exchange interaction
comes from the same s-d interaction and cannot be consid-
ered as an independent parameter. However, straightfor-
ward calculations of the electron and spin Green functions
(see Refs. [20,21]) demonstrate that in the spin-wave tem-
perature region d-d contributions to energy denominators
are expressed in terms of magnon frequencies in any case,
even provided that the bare d-d exchange interaction Jq

is absent.
The s-d exchange model does not describe properly

electronic structure for such HFM as the Heusler alloys
or CrO2, for there are no s-electrons there, and a sep-
aration of electrons into a localized d-like and a delo-
calized s-like group is questionable. In such a case, the
Hubbard model which describes Coulomb correlations in a
d-band is more appropriate. However, qualitative effects of
electron-magnon interaction do not depend on the micro-
scopic model. The calculations of the electron and magnon
Green’s functions in the non-degenerate Hubbard model
were performed in references [27,28] and yielded practi-
cally the same result as in the s-d exchange model (with
the replacement of I by the Hubbard parameter U).

In the spin-wave region we have

H = H0 − I(2S)1/2
∑
kq

(
c†k↑ck+q↓b†q + h.c.

)
+I

∑
kqpσ

σc†kσck+q−pσb†qbp. (2)

The zero-order Hamiltonian includes non-interacting elec-
trons and magnons,

H0 =
∑
kσ

Ekσc†kσckσ +
∑
q

ωqb†qbq,

Ekσ = tk − σ∆/2, ωq = 2S(J0 − Jq), (3)

with ∆ = 2IS being the spin splitting which is included in
H0, b†q, bq are the Holstein-Primakoff boson operators. In
the half-metallic case the spin-flip processes do not work
in the second order in I since the states with one spin pro-
jection only are present at the Fermi level. At the same
time, we have to consider the renormalization of the longi-
tudinal processes in higher orders in I (formally, we have
to include the terms up to the second order in the qua-
siclassical small parameter 1/S). To this end we elimi-
nate from the Hamiltonian the terms which are linear in
the magnon operators by using the canonical transforma-
tion [15], H̃ = eUHe−U with

U = −I(2S)1/2
∑
kq

c†k↑ck+q↓b†q
tk+q − tk + ∆

− h.c. (4)

Then we obtain the effective Hamiltonian

H̃ = H0 +
1
2

∑
kqpσ

(Aσ
kq + Aσ

k+q−p,q

)
c†kσck+q−pσb†qbp.

(5)

Here

Aσ
kq = σI

tk+q − tk
tk+q − tk + σ∆

(6)

is the s-d scattering amplitude which vanishes at q →
0 and thereby takes properly into account the rotational
symmetry of electron-magnon interaction. More general
interpolation expression for the effective amplitude which
does not assume the smallness of |I| or 1/S was obtained
in reference [16] by a variational approach; it does not
differ qualitatively from simple expression (6). In the case
of a considerably k-dependent exchange parameter, which
may be relevant for real itinerant magnets including HFM,
one has in (5)

Aσ
kq → Aσ

kqp = σIk,k+q−p

− 2I2
k,k+qS

tk+q − tk + σS(Ik+q,k+q + Ik,k)
· (7)

The most general and rigorous method for calculat-
ing the transport relaxation time is the use of the Kubo
formula for the conductivity σxx [23]

σxx = β

∫ β

0

dλ

∫ ∞

0

dt exp(−εt)〈jx(t + iλ)jx〉 (8)

where β = 1/T, ε → 0,

j = −e
∑
kσ

vkσc†kσckσ
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is the current operator, vkσ = ∂Ekσ/∂k is the electron
velocity. Representing the total Hamiltonian in the form
H = H0 + H′, the correlator in (8) may be expanded in
the perturbation H′ [24]. In the second order we obtain
for the electrical resistivity

ρxx = σ−1
xx =

T

〈j2
x〉2

∫ ∞

0

dt
〈[

jx,H′
(t)

] [
H′

, jx

]〉
(9)

where H′(t) is calculated with the Hamiltonian H0. Pro-
vided that the perturbation Hamiltonian has the form

H′ =
∑

kk′σσ′
Ŵ σσ′

kk′ c†kσck′σ′ (10)

we obtain

ρxx =
T

2〈j2
x〉2

e2
∑

kk′σσ′
(vx

kσ − vx
k′σ′)2

×
∫ ∞

−∞
dt

〈
Ŵ σσ′

kk′ (t)Ŵ σ′σ
k′k

〉
exp[i(Ekσ − Ek′σ′)t]

(11)

with 〈
j2
x

〉
= e2

∑
kσ

(vx
k)2nkσ(1 − nkσ).

This approach is equivalent to the solution of the Boltz-
mann transport equation by the variational method [25].

In the HFM situation the band states with one spin
projection only, σ = signI, are present at the Fermi
level [2]. Below we consider the case I > 0, σ = + and
omit the spin indices in the electron spectrum. We find
from equation (11) the following expression for the trans-
port relaxation time τ defined by σxx = e2〈(vx)2〉τ

1
τ

=
π

4T

∑
kk′q

(vx
k − vx

k′)2
(
A↑

kq + A↑
k′,q−k′+k

)2

× Nq(1 + Nq−k′+k)nk(1 − nk′)

× δ(tk′ − tk − ωq + ωq−k′+k)

/∑
k

(vx
k)2δ(tk) (12)

where Nq and nk are the Bose and Fermi functions. A
similar expression has been derived first in reference [12],
but with the replacement of the effective amplitude just
by I. After some transformations we obtain

1
τ

= πI2
∑
kpq

(vx
k−vx

k+q−p)2δ(tk)δ(tk+q−p)(1+Nq)(1+Np)

×
(

tk+q

tk+q + ∆

)2
β(ωp − ωq)

exp βωp − exp βωq

/∑
k

(vx
k)2δ(tk) .

(13)

Averaging over the angles of the vector k leads to the
result 1/τ ∝ I2Λ with

Λ =
∑
pq

fpq
β(ωp − ωq)|p − q|
exp βωp − exp βωq

(1 + Nq)(1 + Np) (14)

where fpq = 1 for p, q � q0 and

fpq =
[p × q]2

(p − q)2q2
0

(p, q � q0). (15)

The wavevector q0 determines the boundary of the re-
gion where q-dependence of the amplitude become im-
portant, so that t(k + q) − t(k) � ∆ at q � q0. In the
case q < q0 the simple perturbation theory fails and we
have to take into account the spin splitting by careful
collecting the terms of higher orders in I. In the sim-
ple one-band model of HMF where EF < ∆ one has
q0 ∼ √

∆/W (W is the conduction bandwidth, lattice
constant is put to unity) [15]. Generally speaking, q0 may
be sufficiently small provided that the energy gap is much
smaller than W , which is the case for real HMF systems.
A “crossover” wavevector may exist in principle even for
the narrow-band case (where, instead of spin splitting, the
spin subbands have different widths) provided that the
Fermi level is close to the gap edge for the spin projec-
tion −σ.

The quantity q0 determines a characteristic tempera-
ture and energy scale

T ∗ = Dq2
0 ∝ D(∆/W ) (16)

where D ∝ TC/S is the spin-wave stiffness defined by
ωq→0 = Dq2, TC is the Curie temperature. Note that
in the case of an usual ferromagnetic metal the scale
for existence of one-magnon processes is smaller, T ∗

1 ∝
D(∆/W )2.

When estimating temperature dependences of resistiv-
ity one has to bear in mind that each power of p or q yields
T 1/2. At very low temperatures T < T ∗ small quasimo-
menta p, q < q0 yield main contribution to the integrals.
Averaging the quantity (14) over the angle between the
vectors p and q we derive

Λ =
8

15q2
0

∑
pq

(5p2
+ − p2

−)
p2
−

p+

× β(ωp − ωq)
expβωp − expβωq

(1 + Nq)(1 + Np) (17)

with p+ = max(p, q), p− = min(p, q). Then we obtain for
the resistivity

ρ(T ) ∝ (T/TC)9/2. (18)

Such a dependence was obtained in the narrow-band case
(double-exchange model with large |I|), where the scale
T ∗ is absent [13], and by the diagram approach in the
broad-band case [14]. At the same time, at T > T ∗ the
function fpq in equation (14) can be replaced by unity to
obtain

ρ(T ) ∝ (T/TC)7/2. (19)

This result is in agreement with the old works [12].
Now we treat the two-dimensional (2D) situation

which may be appropriate for layered manganites like
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La2−xCa1+xMn2O7 [11,17]. At low temperatures we
obtain

ρ(T < T ∗) ∝ (T/TC)7/2. (20)

At the same time, for T > T ∗ we obtain after replacing the
scattering amplitude by unity a logarithmically divergent
integral which should be cut at T ∗. Thus we get

ρ(T > T ∗) ∝ (T/TC)5/2 ln(T/T ∗). (21)

To calculate the magnetoresistivity we introduce the
gap in the magnon spectrum, ωq→0 = Dq2 +ω0. Provided
that the external magnetic field H is large in comparison
with the anisotropy gap, ω0 is proportional to H . In the
3D case the resistivity at T < T ∗ is linear in magnetic
field,

ρ(T, H) − ρ(T, 0) ∝ −ω0T
7/2/T

9/2
C . (22)

The situation at T > T ∗ is more interesting since the
quantity

∂Λ

∂ω0
∝

∑
q

qωqNq(1 + Nq)
∑
p

1
ω2

p

∝
(

T

TC

)3 ∑
p

1
ω2

p

contains a divergence which is cut at ω0 or T ∗. We have
at T > ω0, T

∗

δρ(T, H) ∝ − T 3ω0

[max(ω0, T ∗)]1/2
(23)

(of course, at T < ω0 the resistivity is exponentially
small). A negative H-linear magnetoresistance was ob-
served recently in CrO2 [8].

In the 2D case we obtain

∂Λ

∂ω0
∝ T 5/2

∑
p

φ(p)
ω2

p

(24)

where φ(p � q0) = p2/q2
0 , φ(p � q0) = 1. This integral

diverges logarithmically at ω0 � T ∗ and as ω−1
0 at ω0 �

T ∗. Taking into account the lower limit cutoff we derive

δρ(T, ω0 � T ∗) ∝ −
(

T

TC

)5/2
ω0

T ∗ ln
T ∗

ω0
, (25)

δρ(T, ω0 � T ∗) ∝ −
(

T

TC

)5/2

ln
ω0

max(T, T ∗)
· (26)

We see that simple replacement of the electron-magnon
scattering amplitude by I does not enable one to describe
correctly magnetoresistance even at H > T ∗.

3 Non-quasiparticle contributions
to transport properties

Now we treat the impurity contributions to transport
properties in the presence of potential scattering (they

Fig. 1. Density of states in a half-metallic ferromagnet with
I > 0. Non-quasiparticle states with σ = − are absent below
the Fermi level.

were considered first in [26], see also [2]). To second or-
der in the impurity potential V we derive for the electron
Green’s function

Gkk′σ(E) = δkk′G
(0)
kσ (E) + V G

(0)
kσ (E)G(0)

k′σ(E)

×
[
1 + V

∑
p

G(0)
pσ(E)

]
(27)

where

G
(0)
kσ (E) = [E − Ekσ − Σkσ(E)]−1 (28)

is the exact Green’s function for the ideal crystal. In the
second order in I the electron self-energy has the form

Σkσ(E) = 2I2S
∑
q

f(σEk+q,−σ) + Nq

E − Ek+q,−σ + σωq
(29)

with f(E) the Fermi function.
Neglecting vertex corrections and averaging over im-

purities we obtain for the transport relaxation time

δτ−1
imp(E) = −2V 2Im

∑
p

G(0)
pσ(E). (30)

Thus the contributions under consideration are deter-
mined by the energy dependence of the density of states
N(E) for the interacting system near the Fermi level.
The most nontrivial dependence comes from the non-
quasiparticle (incoherent) states with the spin projection
−σ = −signI, which are present near EF (Fig. 1). They
originate from the imaginary part of the electron self-
energy [2,20,27,28]. We obtain at T = 0

δNincoh(E) =

2I2S
∑
kq

f(−σEk+q,σ)δ(E − Ek+q,σ − σωq)
(Ek+q,σ − Ek,−σ)2

· (31)

The contribution (31) is asymmetric and vanishes at EF

(Figs. 1, 2). Near the Fermi level it is determined by the
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Fig. 2. Density of states in a half-metallic ferromagnet with
I < 0. Non-quasiparticle states with σ = + occur below the
Fermi level.

magnon density of states g(ω) and follows a power law,

δNincoh(E) ∝
∫ σE

0

dωg(ω) ∝ |E|αθ(σE) (|E| � ω).

(32)

Here ω is the maximum magnon frequency, θ(x) is the step
function, E is referred to EF ; we have α = 3/2 and α =
1 for 3D and 2D cases, respectively. The corresponding
correction to resistivity reads

δρimp(T )
ρ2

= −δσimp(T )

∝ −V 2

∫
dE

(
−∂f(E)

∂E

)
δNincoh(E) ∝ T α.

(33)

The contribution of the order of T α with α � 1.65
(which is not too far from 3/2) has been observed re-
cently in the temperature dependence of the resistivity
for NiMnSb [9]. The incoherent contribution to magne-
toresistivity is given by

δρimp(T, H) ∝ ω0∂δNincoh(σT )/∂T ∝ ω0T
α−1, (34)

so that we obtain a temperature-independent term in the
2D case.

The non-quasiparticle states in HMF can be probed
also by nuclear magnetic resonance (NMR) since they lead
to the unusual temperature dependence for the longitudi-
nal nuclear magnetic relaxation rate, 1/T1 ∝ T 5/2, instead
of the T -linear Korringa contribution which is absent in
HMF [28,29]. Another useful tool is provided by tunnel-
ing phenomena [30], especially by Andreev reflection spec-
troscopy for a HMF-superconductor tunnel junction [31].
The most direct way is probably the measurement of a
tunnel current between two pieces of HMF with the op-
posite magnetization directions. To this end we consider
a standard tunneling Hamiltonian (see, e.g., Ref. [32])

H = HL + HR +
∑
kp

(
Tkpc†k↑cp↓ + h.c.

)
(35)

where HL,R are the Hamiltonians of the left (right) half-
spaces, respectively, k and p are the corresponding quasi-
momenta, and spin projections are defined with respect to

the magnetization direction of a given half-space (spin is
supposed to be conserving in the “global” coordinate sys-
tem). Carrying out standard calculations of the tunneling
current I in the second order in Tkp one has (cf. [32])

I ∝
∑
kqp

|Tkp|2[1 + Nq − f(tp−q)]

× [f(tk) − f(tk + eV )]δ (eV + tk − tp−q + ωq) (36)

where V is the bias voltage. For T = 0 one obtains

dI/dV ∝ δNincoh(eV ). (37)

To conclude, we have considered peculiarities of trans-
port properties of half-metallic ferromagnets which are
connected with the unusual electronic structure of these
systems. Further experimental investigations would be of
great importance, especially keeping in mind possible role
of HMF for applications [2–4].
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